
CHAPTER 12: 

SPHERICAL COORDINATES 

12.1  DEFINING OF SPHERICAL COORDINATES 

A location in three dimensions can be defined with spherical coordinates (𝜃,∅, 𝜌) where  

• 𝜃 is the same angle 𝜃 defined for polar and cylindrical coordinates.  To gain some insight 
into this variable in three dimensions, the set of points consistent with some constant 
values of 𝜃 are shown below. 

 

• ∅ is the angle between the vector that goes from the origin to the location and the vector 
< 0,0,1 > (the z axis). To gain some insight into this variable in three dimensions, the set 
of points consistent with some constant values of ∅ are shown below. 

 

• 𝜌 is the distance from the origin (0, 0, 0) to the location. 



 

Example Exercise 12.1.1:  Find the point (𝜃,∅, 𝜌) = (150°, 30°, 5). 

Solution: The first requirement of the location is that 𝜃 = 150°.  The following diagrams shows 
all points in the xy plane associated with 𝜃 = 150°. 

 

The second requirement of the location is that ∅ = 30°.  The following diagram shows the set of 
points in the xy plane consistent with 𝜃 = 150° (these can be visualized as a vector) rotated 
upward until the points on this vector achieve an angle of ∅ = 30° with the z axis  



 

The set of points where 𝜃 = 150° and ∅ = 30° can be visualized as the vector shown in the 
above diagram.  If we start at the origin and proceed along this vector until the distance from the 
origin is 𝜌 = 5, we will obtain the location or point associated with (𝜃,∅, 𝜌) = (150°, 30°, 5) in 
3-space. 

 

Example Exercise 12.1.2:  Find the point (𝜃,∅, 𝜌) = (30°, 120°, 6). 

Solution: Starting with 𝜃 = 30° we can obtain the points associated with 𝜃 = 30° in the xy 
plane. 



 

Finally, of those where 𝜃 = 30° and ∅ = 30°, we can find the point with a distance of 𝜌 = 6 
from the origin. Hence the point associated with (𝜃,∅, 𝜌) = (30°, 120°, 6) can be placed in 3-
space. 

 

 

12.2  IDENTIFYING SOLIDS ASSOCIATED WITH SPHERICAL CUBES 

We have previously seen that as cubic coordinates go from constant to constant, the resulting 
solid will be a cube.  If cylindrical coordinates go from constant to constant, the resulting solid 
will be a cylinder or a segment of a cylinder.  Hence, our expectation is that spherical 



coordinates have been designed so that if each coordinate goes from constant to constant, the 
resulting solid will be a sphere or a segment of a sphere. 

Example Exercise 12.2.1: Find the volume associated with 0 ≤ 𝜃 ≤ �
�

, �
�
≤ ∅ ≤ �

�
, 2 ≤ 𝜌 ≤ 4 

Solution: The region in the xy plane associated with 0 ≤ 𝜃 ≤ �
�
 is shown in the diagram below.   

 

If each of the vectors shown in red in the above diagram is rotated upward from the origin to the 
z axis, this will reflect the points associated with ∅ = 0 for each value of 𝜃.  If it is rotated back 
to the xy plane, this will reflect a value of ∅ = �

�
 for each value of 𝜃. If it is rotated halfway 

between the z axis and the xy plane, this will reflect a value of ∅ = �
�
 for each value of 𝜃.  Hence 

the set of points consistent with 0 ≤ 𝜃 ≤ �
�

  and �
�
≤ ∅ ≤ �

�
 will be the points above the first 

quadrant in the xy plane and below the cone ∅ = �
�
 shown in the diagram below. 

 

The volume associated with 0 ≤ 𝜃 ≤ �
�

, �
�
≤ ∅ ≤ �

�
, 2 ≤ 𝜌 ≤ 4 will be the points in the above 

solid that reside between the spheres 𝜌 = 2 and 𝜌 = 4.  This spherical cube is shown in the 
diagram below. 



 

In the above case, when spherical coordinates went from constant to constant, the resulting solid 
was a segment of a sphere.  If we repeat the above steps with 0 ≤ 𝜃 ≤ 2𝜋, 0 ≤ ∅ ≤ 𝜋, 0 ≤ 𝜌 ≤
𝑅, the resulting solid will be an entire sphere of radius R centered at (0,0,0). 

 

12.3  TRANSLATING COORDINATE SYSTEMS 

We now have three different coordinate systems with which we can represent a point in 3-space.  
A point can be represented with (𝑥,𝑦, 𝑧) in cubic coordinates, with (𝑟,𝜃, 𝑧) in cylindrical 
coordinates and with (𝜃,∅, 𝜌) in spherical coordinates.  It is often helpful to translate a problem 
from one coordinate system to another depending on the nature of the problem. As a first step, 
the geometry of each of the coordinates in these three coordinate systems is presented in the 
following diagram. 

  

The right triangle in the xy plane with angle 𝜃 produces the following relationships between 
rectangular and polar coordinates that we should already be familiar with: 

• 𝑥 = 𝑟𝑐𝑜𝑠(𝜃), 
• 𝑦 = 𝑟𝑠𝑖𝑛(𝜃), 
• 𝑥� + 𝑦� = 𝑟� or 𝑟 = �𝑥� + 𝑦� and 



• tan(𝜃) = �
�
 or 𝜃 = 𝑡𝑎𝑛�� ��

�
� when (x, y) is in the first or fourth quadrant and 𝜃 =

𝑡𝑎𝑛�� ��
�
�+ 𝜋 when the point (x, y) is in the second or third quadrant 

The right triangle with angle  produces the following relationships: 

• 𝑧 = 𝜌𝑐𝑜𝑠(∅), 
• 𝑟 = 𝜌𝑠𝑖𝑛(∅), 
• 𝑧� + 𝑟� = 𝜌� or 𝜌 = √𝑧� + 𝑟� and 
• tan(∅) = �

�
 or ∅ = 𝑡𝑎𝑛�� ��

�
� 

Putting some of these relationships together we obtain: 

• 𝑥 = 𝑟𝑐𝑜𝑠(𝜃) and 𝑟 = 𝜌𝑠𝑖𝑛(∅) so 𝑥 = 𝜌𝑠𝑖𝑛(∅)𝑐𝑜𝑠(𝜃) 
• 𝑦 = 𝑟𝑠𝑖𝑛(𝜃) and 𝑟 = 𝜌𝑠𝑖𝑛(∅) so 𝑦 = 𝜌𝑠𝑖𝑛(∅)𝑠𝑖𝑛(𝜃), 
• 𝑧� + 𝑟� = 𝜌� and 𝑥� + 𝑦� = 𝑟� so 𝑥� + 𝑦� + 𝑧� = 𝜌� or 𝜌 = �𝑥� + 𝑦� + 𝑧� 

• tan(∅) = �
�
  and 𝑟 = �𝑥� + 𝑦� so ∅ = 𝑡𝑎𝑛�� ���

����

�
� 

Organizing these conclusions, the following are the relations between spherical and cubic 
coordinates: 
 

• 𝜌 = �𝑥� + 𝑦� + 𝑧� 

• ∅ = 𝑡𝑎𝑛�� ���
����

�
� 

• 𝜃 = 𝑡𝑎𝑛�� ��
�
� when (x, y) is in the first or fourth quadrant and 𝜃 = 𝑡𝑎𝑛�� ��

�
�+ 𝜋 when 

the point (x, y) is in the second or third quadrant 
• 𝑥 = 𝜌𝑠𝑖𝑛(∅)𝑐𝑜𝑠(𝜃) 
• 𝑦 = 𝜌𝑠𝑖𝑛(∅)𝑠𝑖𝑛(𝜃) 
• 𝑧 = 𝜌𝑐𝑜𝑠(∅) 

The following are the relations between cylindrical and spherical coordinates: 

• 𝑧 = 𝜌𝑐𝑜𝑠(∅), 
• 𝑟 = 𝜌𝑠𝑖𝑛(∅) 
• 𝜃 = 𝜃 as the coordinate is shared in both coordinate systems 
• 𝜌 = √𝑧� + 𝑟� and 
• ∅ = 𝑡𝑎𝑛�� ��

�
� 

 

 

 



12.4  APPROXIMATING THE VOLUME OF A SPHERICAL CUBE 

To begin our discussion of the volume of a spherical cube, we will consider the solid ��
�
≤ 𝜃 ≤

��
�

, �
�
≤ ∅ ≤ ��

�
, 5 ≤ 𝜌 ≤ 6 shown in the diagram below. 

 
As with cylindrical cubes, we will approximate the volume of this cube with 
 

Volume = length x width x height 
 
As ∆𝜃 → 0,∆∅ → 0 and ∆𝜌 → 0, all corresponding sides will come to resemble parallel lines 
and this approximation will become precise.   
 
Beginning with the width of the top and the bottom of the spherical cube, we can see in the 
diagram below that 𝜌 goes from 5 to 6 on both the left and right sides of the top and the bottom.  
Correspondingly, we will approximate 𝑤𝑖𝑑𝑡ℎ = ∆𝜌 = 1. 
 

 



 
In the following diagram, we can see that the height of the cube on both the left and the right 
sides will be approximated with an arc that has angle ∆∅ = �

�
.  The radius associated with the arc 

is equal to 5 on the inner side (side closer to the origin) of the cube and is equal to 6 on the outer 
side of the cube.  Hence we will approximate ℎ𝑒𝑖𝑔ℎ𝑡 = 𝜌∆∅ = 6 ∗ �

�
 on the outer side of the 

cube and ℎ𝑒𝑖𝑔ℎ𝑡 = 𝜌∆∅ = 5 ∗ �
�

= 𝜋 on the inner side of the cube. As, ∆∅ → 0 and ∆𝜌 → 0, the 
arcs will approach linearity and the outer and inner heights will approach the same length. 
 

 
 
We now have approximated the height and the width of the cube however looking at the 
diagram, there are four different lengths:   The bottom inner side, the bottom outer side, the top 
inner side and the top outer side.  Starting with the inner sides, we can see in the diagram below 
that both the top and bottom lengths are arcs with angle ∆𝜃 = �

�
. 

 

 



In the following diagram, we can see that the radius associated with the arc that represents the 
length of the to and the bottom side of the cube is the value r from cylindrical and polar 
coordinates.  However we wish to represent the volume in spherical coordinates so we use the 
translation from section 12.3 that indicates 𝑟 = 𝜌sin (∅).  The upper inner arc consists of points 
where  𝜌 = 5 and ∅ = �

�
 and hence the radius of the upper inner arc is 𝜌 sin(∅) = 5 sin ��

�
�.   

The lower inner arc consists of points where  𝜌 = 5 and ∅ = ��
�

 and hence the radius of the lower 

inner arc is = 𝜌 sin(∅) = 5 sin ���
�
�.   

 

 
 

Hence the lower inner arc has angle ∆𝜃 = �
�
 , radius  𝜌 sin(∅) = 5 sin ���

�
� and our 

approximation for the length will be 𝑙𝑒𝑛𝑔𝑡ℎ = 𝜌 sin(∅)∆𝜃 = 5 sin ���
�
� ∗ �

�
 .  The upper inner 

arc has angle ∆𝜃 = �
�
 , radius  𝜌 sin(∅) = 5 sin ��

�
� and our approximation for the length will be 

𝑙𝑒𝑛𝑔𝑡ℎ = 𝜌 sin(∅)∆𝜃 = 5 sin ��
�
� ∗ �

�
 ..  The process to find the lengths of the outer arcs on the 

top and bottom sides of the cube is the same.  The only difference is that the outer arcs use 𝜌 = 6 
and the inner arcs use 𝜌 = 5. 
 



 
 
 
Generalization 
 
When we approximate the volume of a spherical cube, we use 
 

• 𝑙𝑒𝑛𝑔𝑡ℎ = 𝑟∆𝜃 = 𝜌 sin(∅)∆𝜃, 
• 𝑤𝑖𝑑𝑡ℎ = ∆𝜌 and 
• ℎ𝑒𝑖𝑔ℎ𝑡 = 𝜌∆∅ 

 
to obtain, 
 
𝑽𝒐𝒍𝒖𝒎𝒆 = 𝜌∆∅ ∗ 𝑟∆𝜃 ∗ ∆𝜌 = 𝜌� sin(∅) ∆𝜌∆∅∆𝜃. 

 
 

12.5  USING RIEMANN SUMS AND THE FUNDAMENTAL THEOREM 
TO OBTAIN THE MASS OF SPHERICAL CUBES 

Example Exercise 12.5.1:   A spherical cube 5 ≤ 𝜌 ≤ 6 , �
�
 ≤ 𝜃 ≤  �

�
 and �

�
 ≤ ∅ ≤  ��

�
 has density 

=(𝜃) ��
��.  Use Riemann Sums with two divisions in ∅, 𝜃 and 𝜌 to approximate the mass of the 

cube using the largest value of each variable to represent a given division.  Then express the 
Riemann Sum as a triple summation and use the fundamental theorem to find the precise mass of 
the cube. 
 
Solution: 
 
Step 1:  Divide ∅, 𝜃 and 𝜌 into two parts and identify ∅�, ∅�, 𝜃1, 𝜃2 , 𝜌1, 𝜌2,∆∅, ∆𝜃 and ∆ 𝜌: 
 
The following diagram shows the spherical cube associated with  5 ≤ 𝜌 ≤  6 , �

�
 ≤ 𝜃 ≤  �

�
 and �

�
 ≤ 

∅ ≤  ��
�

. 



 
 

The following diagram shows the above spherical cube with two divisions in each variable.  
 

 
 

For convenience, we can divide the 8 divisions into the inner 4 divisions where 5 ≤ 𝜌 ≤ 5.5 and 
the outer four divisions where 5.5 ≤ 𝜌 ≤ 6 as is shown in the following diagrams 



  
Inner Divisions: 5 ≤ 𝜌 ≤  5.5 Outer Divisions:  5.5 ≤ 𝜌 ≤  6 

 
In divisions 1, 2, 5 and 6, ∅ goes from �

�
 to ��

��
 and in divisions 3, 4, 7 and 8, ∅ goes from ��

��
 to ��

�
.  

In divisions 1, 3, 5 and 7, 𝜃 goes from �
�
 to �

�
 and in divisions 2, 4, 6 and 8, 𝜃 goes from �

�
 to ��

�
.  

In divisions 1, 2, 3 and 4, 𝜌 goes from 5 to 5.5 and in divisions 5, 6, 7 and 8, 𝜌 goes from 5.5 to 
6.  Hence, ∅� = ��

��
, ∅� = ��

�
, 𝜃1= ��

�
, 𝜃2 =

�
�
, 𝜌1= 5.5, 𝜌2= 6,∆∅ = �

�
, ∆𝜃 = �

�
 and ∆ 𝜌 = 0.5 

 
Step 2:  Find the appropriate numeric approximation for the length, width, height, volume, 
density and mass for each division:   
 
In Section 12.4, we approximated the volume of a polar cube with volume = length*width*height 
where 𝑙𝑒𝑛𝑔𝑡ℎ = 𝑟∆𝜃 = 𝜌 sin(∅)∆𝜃, 𝑤𝑖𝑑𝑡ℎ = ∆𝜌 and ℎ𝑒𝑖𝑔ℎ𝑡 = 𝜌∆∅.  Using the maximum 
value of each variable in each division, the following two diagrams show the length, width, 
height and density for the 4 inner divisions and the four outer divisions. 
 

 
Inner Divisions: 5 ≤ 𝜌 ≤ 5.5 



 

 

Outer Divisions:  5.5 ≤ 𝝆 ≤ 6 

 
 
 
 
 

The length, width, height, density and mass of each division are summarized in the following 
table: 
 

Division Length 
(m) 

Width 
(m) 

Height 
(m) 

Density 
(��
��) 

Mass 
(kg) 

1 5.5∗ sin ���
�
� ∗ �

�
 0.5 5.5∗ �

�
 3𝜋

8  5.5� ∗
3𝜋
8 ∗ sin �

2𝜋
5 � ∗

𝜋�

40 

2 5.5∗ sin ���
�
� ∗ �

�
 0.5 5.5∗ �

�
 

𝜋
2 5.5� ∗

𝜋
2 ∗ sin �

𝜋
5� ∗

𝜋�

40 

3 5.5∗ sin ��
�
� ∗ �

�
 0.5 5.5∗ �

�
 3𝜋

8  5.5� ∗
3𝜋
8 ∗ sin �

2𝜋
5 � ∗

𝜋�

40 

4 5.5∗ sin ��
�
� ∗ �

�
 0.5 5.5∗ �

�
 

𝜋
2 5.5� ∗

𝜋
2 ∗ sin �

𝜋
5� ∗

𝜋�

40 

5 6∗ sin ���
�
� ∗ �

�
 0.5 6∗ �

�
 3𝜋

8  36 ∗
3𝜋
8 ∗ sin �

2𝜋
5 � ∗

𝜋�

40 

6 6∗ sin ���
�
� ∗ �

�
 0.5 6∗ �

�
 

𝜋
2 36 ∗

𝜋
2 ∗ sin �

2𝜋
5 � ∗

𝜋�

40 

7 6∗ sin ��
�
� ∗ �

�
 0.5 6∗ �

�
 3𝜋

8  36 ∗
3𝜋
8 ∗ sin �

𝜋
5� ∗

𝜋�

40 

8 6∗ sin ��
�
� ∗ �

�
 0.5 6∗ �

�
 

𝜋
2 36 ∗

𝜋
2 ∗ sin �

𝜋
5� ∗

𝜋�

40 

 
Step 3:  Add the masses of the eight divisions to approximate the total mass of the solid: 



 𝑴𝒂𝒔𝒔 ≈ 5.5� ∗ ��
�
∗ sin ���

�
� ∗ ��

��
+ 5.5� ∗ �

�
∗ sin ��

�
� ∗ �

�

��
+ 5.5� ∗ ��

�
∗ sin ���

�
� ∗ �

�

��
+

5.5� ∗ �
�
∗ sin ��

�
� ∗ �

�

��
+ 36 ∗ ��

�
∗ sin ���

�
� ∗ �

�

��
+ 36 ∗ �

�
∗ sin ���

�
� ∗ ��

��
+ 36 ∗ ��

�
∗ sin ��

�
� ∗

��

��
+ 36 ∗ �

�
∗ sin ��

�
� ∗ �

�

��
 

 
Step 4:  Repeat Step 2 using ∅�, ∅�, 𝜃1, 𝜃2 , 𝜌1, 𝜌2,∆∅, ∆𝜃 and ∆ 𝜌 instead of numerical values 
as appropriate.   
 
Division Length 

(m) 
Width 

(m) 
Height 

(m) 
Density 

(��
��) 

Mass 
(kg) 

1 𝜌� sin(∅�)∆𝜃 ∆𝜌 𝜌�∆∅ 𝜃� 𝜃�𝜌�� sin(∅�)∆𝜌∆∅∆𝜃 
2 𝜌� sin(∅�)∆𝜃 ∆𝜌 𝜌�∆∅ 𝜃� 𝜃�𝜌�� sin(∅�)∆𝜌∆∅∆𝜃 
3 𝜌� sin(∅�)∆𝜃 ∆𝜌 𝜌�∆∅ 𝜃� 𝜃�𝜌�� sin(∅�)∆𝜌∆∅∆𝜃 
4 𝜌� sin(∅�)∆𝜃 ∆𝜌 𝜌�∆∅ 𝜃� 𝜃�𝜌�� sin(∅�)∆𝜌∆∅∆𝜃 
5 𝜌� sin(∅�)∆𝜃 ∆𝜌 𝜌�∆∅ 𝜃� 𝜃�𝜌�� sin(∅�)∆𝜌∆∅∆𝜃 
6 𝜌� sin(∅�)∆𝜃 ∆𝜌 𝜌�∆∅ 𝜃� 𝜃�𝜌�� sin(∅�)∆𝜌∆∅∆𝜃 
7 𝜌� sin(∅�)∆𝜃 ∆𝜌 𝜌�∆∅ 𝜃� 𝜃�𝜌�� sin(∅�)∆𝜌∆∅∆𝜃 
8 𝜌� sin(∅�)∆𝜃 ∆𝜌 𝜌�∆∅ 𝜃� 𝜃�𝜌�� sin(∅�)∆𝜌∆∅∆𝜃 

 
 
Step 5:  Add the masses of the eight divisions to approximate the total mass of the solid using r1, 
r2, 𝜃1, 𝜃2 , 𝑧1, 𝑧2,∆r, ∆𝜃 and z: 
 
𝑀𝑎𝑠𝑠 ≈ [𝜃�𝜌�

� sin(∅�) ∆𝜌∆∅∆𝜃 + 𝜃�𝜌�� sin(∅�)∆𝜌∆∅∆𝜃] + 
[𝜃�𝜌�� sin(∅�)∆𝜌∆∅∆𝜃+𝜃�𝜌�� sin(∅�) ∆𝜌∆∅∆𝜃] + 
[𝜃�𝜌�� sin(∅�)∆𝜌∆∅∆𝜃 + 𝜃�𝜌�� sin(∅�) ∆𝜌∆∅∆𝜃 + 
[𝜃�𝜌�

� sin(∅�)∆𝜌∆∅∆𝜃 + 𝜃�𝜌�� sin(∅�)∆𝜌∆∅∆𝜃] 
 
 
Step 6:  Express the approximate mass in Step 5 as a triple summation: 
 
𝑀𝑎𝑠𝑠 ≈ [𝜃�𝜌�

� sin(∅�) ∆𝜌∆∅∆𝜃 + 𝜃�𝜌�� sin(∅�)∆𝜌∆∅∆𝜃] + 
[𝜃�𝜌�� sin(∅�)∆𝜌∆∅∆𝜃+𝜃�𝜌�� sin(∅�) ∆𝜌∆∅∆𝜃] + 
[𝜃�𝜌�� sin(∅�)∆𝜌∆∅∆𝜃 + 𝜃�𝜌�� sin(∅�) ∆𝜌∆∅∆𝜃 + 
[𝜃�𝜌�

� sin(∅�)∆𝜌∆∅∆𝜃 + 𝜃�𝜌�� sin(∅�)∆𝜌∆∅∆𝜃] 
 
By grouping the [..], we obtain: 
 
𝑴𝒂𝒔𝒔 ≈
{∑ 𝜃�𝜌�� sin(∅�)∆𝜌∆∅∆𝜃�

��� + ∑ 𝜃�𝜌�� sin(∅�)∆𝜌∆∅∆𝜃�
��� } +

{∑ 𝜃�𝜌�� sin(∅�)∆𝜌∆∅∆𝜃�
��� + ∑ 𝜃�𝜌�� sin(∅�)∆𝜌∆∅∆𝜃�

��� }. 
 



By grouping the {..} (Note:  The order within each bracket is ∅� followed by ∅�, however this 
makes no difference with a sum.),  we obtain: 
 

𝑴𝒂𝒔𝒔 ≈��𝜃�𝜌�� sin�∅�� ∆𝜌∆∅∆𝜃
�

���

�

���

+ ��𝜃�𝜌�� sin�∅�� ∆𝜌∆∅∆𝜃
�

���

�

���

 

 
Grouping these last two terms we obtain: 
 

𝑴𝒂𝒔𝒔 ≈���𝜃�𝜌�� sin�∅�� ∆𝜌∆∅∆𝜃
�

���

�

���

�

���

 

 
 
Step 7:  As ∆𝜌 → 0, ∆𝜃 → 0 and ∆∅ → 0, this approximation becomes precise and we can apply 
the fundamental theorem to find the precise mass of the solid.  Note that we change the order of 
expressions that are multiplied together so that the sigmas are coupled with the appropriate ∆′𝑠. 
 

𝑴𝒂𝒔𝒔 = lim
 ∆� →�

lim
 ∆∅ →�

lim
∆�→�

���𝜃�𝜌�� sin�∅�� ∆𝜃∆∅∆𝜌
�

���

�

���

�

���

 

 

𝑴𝒂𝒔𝒔 = �� �𝜃𝜌� sin(∅) 𝑑𝜃𝑑∅

�
�

�
�

��
�

�
�

𝑑𝜌
�

�

 

 

12.6  VOLUMES ASSOCIATED WITH INTEGRALS IN SPHERICAL 
COORDINATES 

Example Exercise 12.6.1: Find the solid associated with ∫ ∫ ∫ 𝜌�sin (∅)�
�

�
�
�

�
� 𝑑𝜌𝑑∅𝑑𝜃 

Solution: From the above section where we use the fundamental theorem and Riemann sums to 
find the volume of a spherical solid, we should remember that 𝜌� sin(∅) is necessary for the for 
the expression of a volume in spherical coordinates.  Hence the integral 

∫ ∫ ∫ 𝜌�sin (∅)�
�

�
�
�

�
� 𝑑𝜌𝑑∅𝑑𝜃 is simply a volume and were there a density f, it would be expressed 

as ∫ ∫ ∫ (𝑓)𝜌�sin (∅)�
�

�
�
�

�
� 𝑑𝜌𝑑∅𝑑𝜃. 

Working from the outside inward, the first datum from the integrals is ∫ 𝑑𝜃�
�  indicating that our 

volume will contain values of 𝜃 between 𝜃 = 0 and 𝜃 = 𝜋 



 

The second datum from the integral is ∫ 𝑑
�
�
� ∅ indicating that for every value of 𝜃 between 𝜃 =

0 and 𝜃 = 𝜋, we will accept values of ∅ that reside between ∅ = 0 and ∅ = �
�
 . 

 

The third datum from the integral is ∫ 𝑑𝜌�
�  indicating that for every value of 𝜃 and ∅ in the 

defined region, we will accept values of 𝜌 that reside between 𝜌 = 0 and 𝜌 = 4. Taking all of the 



data into account, this triple integral will represent the half of an ice cream cone shaped solid 
shown in the following diagram. 

 

EXERCISE PROBLEMS: 

1) Express the volume of the following solids as a triple integral in (i) spherical coordinates, (ii) 
cylindrical coordinates and (iii) cubic coordinates. 
 
A. Above the xy plane and below the sphere 𝑥� + 𝑦� + 𝑧� = 9. 
B. Below the xy plane and above the sphere 𝑥� + 𝑦� + 𝑧� = 36. 
C. Inside the sphere 𝑥� + 𝑦� + 𝑧� = 49 and satisfying that 𝑥 ≤ 0. 
D. Inside the sphere 𝑥� + 𝑦� + 𝑧� = 25 and satisfying that 𝑥 ≤ 0 and  𝑦 ≤ 0. 
E. Inside the sphere 𝑥� + 𝑦� + 𝑧� = 64 and satisfying that 𝑧 ≤ 0 and  𝑦 ≤ 0. 
F. Inside the sphere 𝑥� + 𝑦� + 𝑧� = 4 , above the xy plane and satisfying that 𝑥 ≤ 0 and  

𝑦 ≥ 0. 
G. Inside the sphere 𝑥� + 𝑦� + 𝑧� = 1 , above the xy plane and satisfying that 𝑥 ≤ 𝑦 and  

𝑥 ≥ 0. 
 

2) The density of birds in a spherical cage is  𝜃 + ∅ 3

birds
m

and we wish to obtain the number of fish in 

the tank described by 328,,
2293
ππππρθφ≤≤≤≤≤≤ .  

 



A. If there are two divisions in each variable and the number of fish is to be approximated using the 
minimum value for each variable in each division, find 121,,ρρθ , 2θ , 1φ  and 2φ use them to fill in 
the following table with numerical values. 

 
 

Division Length Width Height  Density No. of birds 
1      
2      
3      
4      
5      
6      
7      
8      

 
B. Use the values of 121,,ρρθ , 2θ , 1φ  and 2φ  to fill in the same table below using 121,,ρρθ , 2θ , 1φ  

and 2φ ,and, ρ∆ , θ∆  and φ∆  instead of numerical values. (Note, the divisions should not change 
between the two tables.) 

 
Division Length Width Height  Density No. of birds 

1      
2      
3      
4      
5      
6      
7      
8      

 

C. Express the approximate no. of birds numerically. 
D. Express the number of birds obtained in part C in the form (...) ρφθ∆∆∆∑∑∑ Take the 

appropriate limits to convert the sum in part D to an integral and evaluate the integral. 
 

3) The density of fish in a spherical tank is y  ������
��  and we wish to obtain the number of fish in the tank 

described by 24,0,
242
πππρθφ≤≤≤≤≤≤ .  

A. If there are two divisions in each variable and the number of fish is to be approximated using the 
maximum value for each variable in each division, find 121,,ρρθ , 2θ , 1φ  and 2φ use them to fill in 
the following table with numerical values. 
 

 



Division Length Width Height  Density No. of fish 
1      
2      
3      
4      
5      
6      
7      
8      

 
B. Use the values of 121,,ρρθ , 2θ , 1φ  and 2φ  to fill in the same table below using 121,,ρρθ , 2θ , 1φ  

and 2φ ,and, ρ∆ , θ∆  and φ∆  instead of numerical values. (Note, the divisions should not change 
between the two tables.) 
 

Division Length Width Height  Density No. of fish 
1      
2      
3      
4      
5      
6      
7      
8      

 

C. Express the approximate no. of fish numerically. 
D. Express the number of fish obtained in part C in the form (...) ρφθ∆∆∆∑∑∑ Take the 

appropriate limits to convert the sum. 


